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A quantitative structure-property relation model was developed to predict the 
upper flammability limit (volume percent in air) of pure compounds, based only in 
their structures. A group contribution method was used to determine the upper 
flammability limit (UFL) through an artificial neural network. The method was 
used to identify the structure groups that have a significant contribution to the 
target property and concluded that 30 atom-type structure groups can represent 
the UFL for 550 pure substances. The models input parameters are the number 
of occurrence of each of the 30 structure groups in the molecule. The model 
predicts UFL with a correlation coefficient of 0.9996 and average absolute 
deviation of 0.17 vol %. The results were compared with multivariable regression 
model and other methods in the literature. The model is very useful and 
convenient for accessing the hazardous risk potential of chemicals for which 
experimental data is not available. 
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INTRODUCTION 

The flammability limits provide the range of fuel concentration usually in vol % in air at 298K 
within which a gaseous mixture can ignite and burn. Below the Lower Flammability Limit 
(LFL) fuel is not enough to cause ignition. Above the Upper Flammability Limit (UFL), oxygen 
is insufficient to propagate the reaction away from the ignition source (Sheldon, 1984).  

The flammability limits are some of the most important safety specifications used in 
assessing the overall flammability hazard potential of a chemical substance in storage, 
processing, and handling. They may be used to determine guidelines for the safe handling 
of volatile chemicals, and in particular to assess ventilation requirements for gases and 
vapors. A precise experimental determination of the flammability limits requires the use of 
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a standardized apparatus and conditions as specified in ASTM standard E681 (ASTM, 
1985).The experimental determination of the flammability limits is laborious and not 
always practical and a prediction method that is desirably convenient and fast must be 
used to estimate them. 

Albahri (2003a) presented a detailed review of the available methods in the literature to 
determine the flammability limits, and further predicted UFL of hydrocarbon compounds 
from the molecular structure using the Structure Group Contribution (SGC) method and 
Multivariable Nonlinear Regression (MNLR) technique. The input parameters to the final 
equation are the number of occurrence of each of the structure groups in the molecule. 
Although the model was able to accurately predicted UFL for 464 compounds with a 
correlation coefficient (R) of 0.96 and an average absolute deviation (AAD) of 1.25 vol %, it 
is limited to only hydrocarbons. 

In previous work, Albahri (2013a, 2014a, 2014b, 2015) developed Artificial Neural 
Network (ANN) models for estimating various properties of pure substances including 
the LFL with high accuracy by breaking down their molecular structure into smaller atom-
type groups and measuring their contribution to the desired property. This work is a 
continuation of that effort to predict the UFL using the same technique, with the ultimate 
future goal to predict the molecular composition and properties of light petroleum 
fractions like Kerosene and diesel (Albahri, 2005a; Albahri, 2005b). 

Recently, Lazzus (2011) developed ANN model based on particle swarm optimization 
(PSO) to estimate UFL of organic compounds in air from their molecular structure. The 
input to the ANN was 40 structure groups that define the organic compounds in addition 
to the molecular weight and the dipole moment. The neural network constructed using 42 
neurons in the input layer, six neurons in the hidden layer, and two neurons in the output 
layer was able to predict the target property with R = 0.9818. The maximum percentage 
errors were 27.8 %, which is rather high. 

Gharagheizi (2009) developed a quantitative structure property relation(QSPR) model to 
predict the UFL of compounds using a five-parameter multivariable linear equation 
calculated from the chemical structure of the molecules with an average absolute error 
(AAE) of 9.7% and R = 0.92 as follows, 

UFL (vol%) = 10.35415(±0.31456) – 1.35486 (±0.08144)jhetv 

– 42.28779(±0.144928)PW5+18.59571(±0.62369)SIC0   (1) 

– 0.98203(±0.0703)MATS4m + 0.68363(±0.03235)MLOGP 

where jhetv is Balaban-type index from van der Waal’s weighted distance matrix, PW5 is 
path/walk 5 Randic shape index, SIC0 is the structural information content (neighborhood 
symmetry of zero-order), MATS4m is Moran autocorrelation-lag 4 weighted by atomic 
masses, and MLOGP is Moriguchi octanol-water partition coefficient (log P).Not only does 
the method use five molecular descriptors that are difficult to determine but also is less 
accurate than the method of Lazzus (2011). 

Gharagheizi (2010) further developed a molecular model for estimation of UFL of pure 
compounds using a three-layer feed-forward neural network algorithm the input 
parameters of which are the number of occurrences of 113 predefined functional groups. 
The ANN model constructed using 113 neurons in the input layer, 4 in the hidden layer, 
and 1 in the output layer predicts the UFL with AAE = 7.07%, AAD = 0.882 and R= 0.9469. 
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Gharagheizi et al. (2012) further developed a corresponding states equation for estimation 
of the UFL temperature of chemical compounds with AAE = 1.7%, 

UFLT(K) = 2ω + 11.799 + Tc(0.1401ω – 0.1401(0.494ω – 0.3851)2 + 0.4943) (2) 

This equation requires the acentric factor ω and the critical temperature, Tc in K, which is 
not convenient. Our goal is to predict the UFL from the molecular structure of the 
compound alone. 

A careful examination of the UFL of hundreds of pure compounds reveals its dependency 
on the molecular structure of the compound. In this work, we investigate this dependence 
of UFL on the molecular structure using a SGC approach, which is a proven and very 
powerful tool for predicting many physical and chemical properties of pure compounds 
(Reid et al., 1987). Many commercially available software packages such as AIChE-
Cranium (Molecular Knowledge Systems, 1998) and ASTM-CHETAH (ASTM, 2001; 
Seaton et al., 1974) estimate the properties of pure compounds from their chemical 
structure. 

Numerous structure group contribution methods, including the work of Ambrose, Joback, 
Fedors, Thinh et al., Benson, Yoneda, Qrrick-Erbar, Grunberg-Nissan, and Chueh-
Swanson, are available in the literature (Reid et al., 1987). The major differences between 
these methods involve the choice of the structure groups and the way in which these 
groups contribute to the properties overall. The group contribution methods of Benson 
and Yoneda allow for the effects of next-nearest neighbors, but the calculations are 
difficult to master. Joback’s method is easier to use and has wide applicability. The 
property calculations may be simple algebraic additions of the group contribution values 
or a very complex set of equations, such as Thinh et al.’s equations for calculating the heat 
capacity (Reid et al., 1987; Joback, 1984). In general, the complex methods are more 
accurate, but the simple methods provide reliable estimates and are easier to use. 

METHOD 

A careful examination of the UFLs of hundreds of compounds reveals the complex 
dependence of this property on the structure of the molecule (API, 1987; Dewan, 2006).We 
must account for all of the parameters when selecting appropriate structure groups that 
can represent the UFL property. 

Structure Group Contribution (SGC)  

UFL is a macroscopic property of compounds that relates to the molecular structure and 
determines the magnitude and predominant types of the intermolecular forces. The 
concept of structure suggests that a macroscopic property can be calculated from group 
contributions. The relevant characteristics of the structure are related to the atoms, such as 
atomic groups, bond type etc. We assign numerical values through regressions of available 
experimental data using statistical methods and determine the property through algebraic 
equations that sum the contributions of the parts of the molecule. 

Of the many SGC estimation methods available in the literature, the Joback (1984) 
definitions of group contributions were selected as a starting point based on their 
simplicity, generality and accuracy (Reid et al., 1987).This combination was tested and 
modified with the functional groups in the molecules that result in the best R and AAD 
while using ANN. The Joback method of group contributions is explained in detail 
elsewhere (Reid, 1987; Joback, 1984).Ever since, additional experimental values and 



Albahri: Prediction of the Upper Flammability Limit of Pure Compounds                                                                                                                      (59-70) 

Page 62                                                                                                                                                                 Volume 5, No 1/2016 | AJASE 

 

efficient computational techniques have been developed. We reevaluated Joback’s scheme 
based on the experimental data as explained above and determined the values of the 
group contributions. From the original Joback scheme, the groups in Table 1 are adopted 
to account only for those that have a significant influence on the UFL property. For 
example, no significant distinction in the UFL existed for the cis and transstructural 
orientations in olefins or cyclic compounds. Therefore, this distinction was avoided when 
choosing structure groups. Knowing the location of the alkyl substitutions on the benzene 
ring or in the ortho, meta, and para positions in aromatics, the location of the alkyl 
branches along the chain for isoparaffins and isoolefins, the location of the double bond 
along the chain in olefins, and the alkyl substitutions for naphthenes was unnecessary. 
Our attempts to enhance the model results by using two sets of structure groups, one for 
the aromatic ring in aromatics and another for the cyclic ring in naphthenes did not 
significantly improve the model predictions and correlation with the experimental data; 
therefore, we avoided such distinctions. 

SGC-MNLR model 

In a traditional SGC approach, the group contributions are usually incorporated in some 
form of algebraic equation related to other properties, such as the boiling point, molecular 
weight, or correlation constants to estimate the desired property. Many equations have 
been proposed ranging from linear algebraic-summation of the SGC values to nonlinear 
and polynomial functions (Reid, 1987). Albahri (2003a , 2003 b, 2012, 2013 b) tested several 
correlations and concluded that the target property is best predicted using the following 
polynomial form, 

ф = a + b (∑niφi) + c (∑niφi)2 + d (∑niφi)3 + e (∑niφi)4  (3) 

where the correlation constants a, b, c, d, and e are to be determined through regression of 
the experimental data. ф is the target property of interest.ni is the number of occurrences of 
each structure group in the molecule. φi is the contribution value of each structure group 
that can be determined through regression of the experimental data by MNLR, and ∑niφiis 
the sum of the SGCs for each molecule toward the target property.  

We used the Generalized Reduced Gradient (GRG2) optimization algorithm (Lasdon et al., 
1978) in the solver function of Microsoft Excel™ to determine the parameters (structure 
group contribution values and the constants for Eq.3) while using MNLR. The objective was 
to minimize the sum of the absolute deviations between the calculated and experimental 
UFL for the compounds by changing the values of the structure group contributions and the 
constants for Eq.3. That resulted in the lowest absolute AAD and the best R.  

SGC-ANN model 

Lippmann (1987) and Widrow and Lehr (1990) presented the theoretical basis of neural 
computing. ANNs are computational models inspired by the human central nervous system 
capable of machine learning and pattern recognition. ANNs are systems of inter-connected 
mathematical functions called “neurons.” They can compute values from inputs once the inter-
connecting weights between the neurons are determined. Neural network computations have 
several advantages over traditional MNLR methods regarding the speed of computation, 
learning ability, and fault tolerance (Lippmann, 1987; Widrow and Lehr, 1990).ANN technique 
has been widely applied to various engineering areas such as modeling of chemical processes 
(Elkamel et al., 1999)and prediction of the thermodynamic and the transport properties (Lee 
and Chen, 1993; Ismail et al., 1996; Bunz et al., 1999).Moreover, Albahri (2003a, 2003b, 2013a, 
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2014, 2015) used combination SGC and ANN models to predict thermodynamic properties of 
pure compounds with various ANN architectures and input parameters. 

In this work, we estimate the UFL of pure compounds from their molecular structure 
using a SGC approach. Toward that purpose, ANN model was constructed using 
MATLAB (the Mathworks Inc., 2001) code to test several possible SGC definitions (Reid et 
al., 1987; Albahri, 2003a; Albahri, 2003b; Albahri, 2013a; Albahri, 2014; Albahri, 2015) and 
propose the most appropriate structure groups and their contribution values for 
predicting the UFL property. The model was used to investigate the structure groups that 
have a significant contribution to UFL and to reveal the groups that provided the best 
correlation with the experimental data. Furthermore, the final groups were tested for their 
ability to predict the UFL of a new set of compounds that were not used while developing 
the ANN model.  

We tried several ANN architectures and selected the one that best simulated UFL. The 
trials included using ANN with a single hidden-layer or a double hidden-layer, while 
varying the number of neurons in the hidden and input layers. They also included using 
various functional or structure groups, constraining the connection weights amongst the 
neurons between certain limits, and determining the appropriate number of time steps 
(epochs) for the runs. The final network structure is shown in Figure 1.  

 

Figure 1: Schematic representation of the 30-14-1ANN used to predict the UFL of pure 
compoundsfrom their structure groups 

It consists input, output, and hidden layers. The number of neurons in the input layer is 
equal to the number of structure groups investigated. The number of neurons in the 
hidden layer is varied to determine the optimum. The output layer has one neuron 
representing the predicted UFL property. A hyperbolic tan-sigmoid (tansig) function was 
selected as the transfer function for each neuron in the hidden layer and a linear (purelin) 
function for the neuron in the output layer, both of which are built in functions in the 
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Matlab library. From MATLAB documentation the functional form for the tansig is the 
hyperbolic tangent shown in Eq. (4) and purelin is simply y=x. The inputs to the network 
algorithm are the number of occurrence of the structure groups in the given substance. We 
assign an input value of zero to the group that does not exist in a molecule. 

   (4) 

When comparing the different structure group definitions and arriving at the final list, the 
data set contained 550 pure substances that are used as inputs to the neural network. This 
probing data set is taken from the property databank of API-TDB (API, 1987) and AIChE-
DIPPR (Dewan, 2006) to represent the compounds that likely exist in Kerosene and diesel 
which are the target of our future simulation. These data on UFL were determined using 
the experimental method described by ASTM standard E681-85 (ASTM, 1985). Each one of 
these 550 input sets included a group-number vector representing the number of structure 
groups in a given substance. The connection weights of the network were adjusted 
iteratively between -1 and 1 through a back-propagation algorithm with the generalized 
delta rule to minimize the mean square error between the desired and the actual outputs. 
During learning, we recorded the AAD, maximum deviation, and R of the predictions 
along with the corresponding epochs.  We found that 300 epochs were sufficient to achieve 
convergence in learning where the deviation between the actual and the desired responses 
is not significant. Therefore, the training was terminated at that number of time steps. 
Convergence occurred in less than a minute for all cases when using a desktop computer. 

To avoid over-fitting when determining the number of neurons in the hidden layer and 
ensure that the neural network is trained properly with the experimental data, the 
maximum number of neurons in the hidden layer is determined using the following 
constraint for the three-layered network architecture shown in Figure 1, 

H < (D–1) /(I – 2 )      (5) 

Where, H is the number of neurons in the hidden layer rounded down to the nearest 
whole number. D is the number of experimental data points used when training the neural 
network, and I is the number of inputs (total number of groups) to the network. Only 90% 
of the available experimental data were used during network training, while the 
remaining 10% were used to test the trained network. The actual number of hidden-layer 
neurons was determined by stepping down one number at a time until the best results 
were obtained, as indicated by the AAE and R, for both the training and testing data sets. 
We found that using 14 neurons in the hidden layer is the best for that purpose and 
therefore the optimal network architecture was 30 neurons in the input layer, 14 neurons 
in the hidden layer, and one neuron in the output layer, as shown in Figure 1. 

A mathematical description of the computation from the ANN model is  

        
   

 

       
   

 

                                                              

Where O is the output, σH is the activation (transfer) function for the hidden layer, and σO is the 
activation function for the output layer, wi

H→O is the weight connecting neuron i from the hidden 
layer to the output, wji

I→H is the weight connecting input j to hidden neuron i, Ij is the value of 
input j, bi is the bias value associated with hidden neuron i, and bO is the bias associated with the 
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output. One should be able to compute UFL from this equation and the sigmoid function 
provided above, along with the weights and biases determined in this manuscript. 

After determining the final network architecture, the predictive ability of the ANN was 
demonstrated by training it with the experimental values of only495of the compounds then 
using the trained networks to predict the UFL of the 55 remaining compounds. Due to the 
limited number of molecules in our data set, we used 90% of the data for training and 10% for 
testing to ensure that the network is trained well for the various structure groups. The 
compounds in the testing data set were randomly chosen based on the abundance of their 
counterparts from the class of compounds they represent in the training data set. This choice 
was necessary because ANN can predict UFL only for the compounds upon which it was 
trained. The accuracy of these predictions was then compared with the experimental data. 

RESULTS AND DISCUSSION 

SGC-MNLR model 

Using the experimental UFL values for 550 pure compounds we calculated the constants 
for Eq.3 and the values for the various structure group contributions in Table 1.  

Table 1: Atom-type structure groups corresponding to the input nodes of the ANN in Figure 1 
and SGC values for the MNLR model for estimating UFL of pure compounds 

Serial No. Groups UFLi 

1 – CH3 1.114692 

2 > CH2 0.339248 

3 > CH – 0.138901 

4 > C < -2.50000 

5 = CH2 2.305876 

6 = CH – 2.024712 

7 = C < 1.346964 

8 = C = 6.542315 

9 ≡ CH 18.1876 

10 ≡ C – 2.243466 

11 > CH2 (ring) 0.570317 

12 > CH – (ring) 0.70827 

13 > C < (ring) 0.403864 

14 = CH – (ring) 0.672134 

15 = C < (ring) 0.654589 

16 – F 4.231781 

17 – Cl 2.254908 

18 – OH (alcohol) 6.41015 

19 – O – (non-ring) 13.04636 

20 >C = O (non-ring) Ketone 5.417596 

21 O = CH – (aldehyde) 13.023 

22 – COOH (acid) 0.047503 

23 = O 0.001000 

24 – NH2 8.603798 

25 > N – (nonring) 1.900000 

26 – O – (ring) 3.179851 

27 > C = O (ring) 9.414214 

28 > NH (ring) 6.019325 

29 – N = (ring) 2.458781 

30 – H 12.51823 
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An optimization algorithm was used for that purpose. The algorithm minimizes the sum 
of the difference between the calculated and experimental UFL. The regression of the 
algorithm was less than 1 min on a personal computer. The final equation obtained is,  

UFL = 3.563 + 0.5237 (∑niUFLi) + 1.572.10-9 (∑niUFLi)2 

+ 6.375.10-8 (∑niUFLi)3 + 3.266.10-5 (∑niUFLi)4   (7) 

Where UFL is the upper flammability limit in vol %, UFLi is the atom-type structure group 
contribution to UFL listed in Table 1, ni is the number of occurrence of each structure 
group in the molecule, and ∑ni UFLi is the sum of the atom-type SGCs to the UFL for each 
molecule. The calculation procedure for UFL using Eq. 7 and the SGC values in Table 1 is 
illustrated in Albahri (2003a). The results for the SGC-MNLR model to predict UFL using 
Eq.7 and the structure group contribution values from Table 1 are summarized in Table 2.  

Table 2: Comparison of the present ANN and MNLR models with others from the 
literature for estimating the UFL of pure compounds 

Method Model Data Set AAD  
(Vol.%) 

Ave % 
error 

Max % 
error 

Correlation  
Coefficient 

This work  SGC-ANN Overall 550 0.17 2.04 16.09 0.9996 

This work SGC-ANN Training 495 0.17 2.09 16.09 0.9996 

This Work  SGC-ANN Testing 55 0.16 1.64 10.84 0.9996 

This Work SGC-MNLR Overall 550 3.36 22.96 345.74 0.5200 

Lazzus (2011)  ANN Overall 418 - 7.10 27.80 0.9818 
Gharagheizi (2009)  QSPR correlation Overall 856 0.8483 9.70 30.73 0.9200 
Gharagheizi (2010)  ANN Overall 867 0.882 7.07 > 30.92 0.9469 

 

The predictions did not correlate very well with the experimental data with R= 0.52, AAD = 
3.36 vol % and AAE = 22.96%. Our efforts to vary the initial guesses did not improve the 
results at all. The limitations are primarily associated with using a simple mathematical 
expression (Eq. 7) that was not able capture the complex nature of UFL for the various families 
of the chemical compounds. Minor improvements were obtained using other optimization 
tools, such as JMP statistical software, MATLAB or GAMS. Previous work shows that when 
MNLR fails a nonlinear modeling environment such as ANN can produce better predictions 
(Pan et al., 2007; Patel et al., 2009; Albahri, 2013a; Albahri, 2014; Albahri, 2015). 

SGC-ANN model 

While using the probing set of data on UFL, several structure groups derived from the 
Joback definitions of group contributions were tested and modified. During this stage, R 
was used to reveal the structure group definitions that significantly contribute to UFL. The 
set of groups that can best correlate the experimental data (with R = 0.9996) is shown in 
Table 1comprising 30 groups. The AAD in the predicted UFLs for all types of compounds 
ranging in UFL from 4.67 to 96.19 vol % was 0.17% as shown in Table 2, which is very 
accurate. In addition to the proposed structure groups in Table 1, several other groups 
were investigated. Although better results were obtained with a larger number of 
structure groups, the improvement was not significant. For instance, to improve the 
model’s predictions we sought to add the following structure groups to distinguish the 
groups that are part of an aromatic ring from those that are not: =CH−, >CH2, >C= (both 
fused and non-fused). We also sought to account for the structural orientation of the >C= 
group in the ortho, meta, and para positions on the aromatic ring (Albahri, 2003a; Albahri, 
2003b; Albahri, 2012; Albahri, 2013b). Adding these seven groups improved the 
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predictions marginally; AAD improved by only 0.005vol. % while R improved by only 
0.0001. Many other prospects have been considered but are too numerous to present.  

To assess the accuracy of the predictions, the available experimental data were then 
separated into training and testing data sets consisting of 495 and 55compounds, 
respectively. The AAD, AAE and R between the correlated UFL and the experimental data 
used for training the network were calculated. The results from the trained network are 
summarized in Table 2, showing that the AAD= 0.17vol%, AAE = 2.09 % and R = 0.9996 for 
UFL calculations for this mode. The correlation between the ANN model and the training 
data set is very good. The predictions of the trained networks were then cross-validated 
against a testing set of data for 55 compounds that were not used during the training 
process. The AAD, AAE and R between the predicted UFL and the experimental data used 
when testing the network were calculated. The predictions compared favorably against this 
new data set with an AAD= 0.16 vol %, AAE=1.64%, and R = 0.9996.The predictions for the 
ANN model for the testing set of data were excellent. The predictions were comparable to 
the trained networks in terms of AAD, AAE, and R, as shown in Table 2. Figure 2 is a parity 
plot showing the accuracy of the model correlations for both training and testing data sets. 

 
Figure 2: Parity plot showing the accuracy of the model correlation for the UFL of a 
training set containing 495 pure compounds and the prediction for a testing set containing 
55 compounds using the SGC-ANN model 

Figure 3 shows the percentage errors for the overall data set where 90% of data is below 
the 0.5 vol % absolute deviation, 7% of data is within 0.5-1 vol % absolute deviation, and 
only 3% of data is between 1-1.5% absolute deviations.  
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Figure 3: Percentage errors for the UFL for the whole data set of 550 pure compounds 
when using the SGC-ANN model 

Table 3: Parameters (weights and biases) of the hidden layer for the ANN 
architecture described in Figure 1 for predicting UFL 

W1 Hidden neuron 
           Input 

neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0.1149 -0.9467 0.1931 0.6017 0.8969 -0.5836 0.3754 0.0384 0.7693 0.4395 -0.4833 -0.0912 -0.5627 0.931 

2 -0.2862 -0.8788 0.5127 0.7513 -0.402 -0.5221 0.7975 -0.6421 0.7834 0.4158 0.6178 -0.5264 -0.0771 -0.8319 

3 0.6965 0.1209 -0.3628 -0.2381 0.6914 -0.2683 -0.7857 -0.5223 -0.8006 0.1374 -0.6718 0.04 -0.6574 0.536 

4 -0.2478 0.6302 -0.9103 0.1863 0.8443 -0.4432 0.7166 -0.6933 -0.7725 -0.5473 0.7696 -0.791 -0.4048 0.9919 

5 -0.5713 -0.0031 -0.4207 0.3288 0.861 0.5594 0.3062 -0.6422 -0.719 -0.9993 -0.3764 0.5735 0.8334 -0.9584 

6 0.6336 0.2361 0.1209 -0.4871 0.6053 -0.4969 0.4674 0.2778 -0.5081 0.2103 0.1865 0.2888 -0.5436 0.2711 

7 -0.654 0.0772 0.2478 0.3538 0.3334 0.7908 -0.8977 -0.3299 0.496 -0.3969 0.7582 0.3236 -0.7308 -0.8525 

8 -0.9682 -0.5317 0.0326 -0.0795 0.382 0.1731 0.017 -0.7408 -0.5452 -0.248 -0.3973 0.4905 -0.3194 0.2744 

9 0.9652 0.0056 0.8989 0.6242 0.7849 -0.812 0.5752 0.7104 -0.6107 -0.7784 0.4668 0.4016 0.2603 0.5044 

10 0.3237 0.7474 -0.4575 -0.1533 -0.5395 -0.9746 -0.7719 0.61 -0.284 -0.0697 0.7353 -0.4914 0.6215 0.311 

11 0.776 -0.0231 0.9892 -0.2411 0.059 -0.6688 0.0036 -0.1354 0.2851 0.3577 0.8127 -0.5579 -0.6674 0.1292 

12 0.9307 -0.9282 0.7434 -0.9004 0.0367 -0.6458 0.3975 -0.4339 0.771 -0.7474 0.0384 0.7155 0.7595 -0.3275 

13 -0.1242 -0.0562 -0.7041 -0.693 0.0611 0.4739 -0.1867 -0.2464 -0.3816 0.7593 0.2246 -0.4686 0.8207 0.279 

14 -0.5359 0.3534 0.333 -0.6951 -0.8976 -0.4991 -0.7068 -0.7494 0.6272 -0.6585 -0.8309 0.4235 0.0627 -0.4447 

15 -0.2609 -0.9493 0.7815 0.6965 -0.462 0.1458 -0.628 0.1642 -0.3002 0.3267 0.6462 0.1224 0.8249 0.5795 

16 -0.6891 0.649 -0.6187 0.2645 0.3177 0.571 -0.2215 -0.1016 -0.0301 0.2227 -0.5758 -0.9016 0.4982 0.027 

17 -0.5688 -0.7728 -0.688 -0.176 -0.1734 -0.9387 0.8143 -0.6091 -0.2055 -0.3892 -0.589 0.7182 -0.3043 0.4647 

18 -0.1767 -0.1953 0.0111 -0.6293 0.0465 0.2963 -0.8916 0.5862 0.5393 0.4074 -0.0677 -0.7557 0.5506 -0.6096 

19 -0.1084 -0.9492 -0.384 0.7143 0.6302 -0.3503 0.7016 -0.0353 0.1081 0.2388 0.2877 0.2112 0.3178 0.0202 

20 0.4244 0.0296 0.2126 0.8881 0.6055 -0.3825 0.1616 -0.6435 -0.4365 0.6242 0.2983 -0.8806 0.1057 -0.0902 

21 0.8033 -0.4245 -0.8734 -0.0445 0.9093 0.8864 0.1128 0.2651 0.4846 -0.8112 -0.8866 0.0756 -0.8466 -0.0966 

22 -0.6037 0.5596 0.2381 -0.922 0.7347 0.5492 0.7502 0.4499 -0.212 -0.3479 0.0072 0.1169 0.4587 0.5557 

23 -0.0315 0.589 -0.0582 -0.5657 0.1497 0.3494 0.3258 0.77 0.4801 0.489 0.6508 0.8889 0.0067 0.2563 

24 0.5804 -0.1001 0.0489 -0.6252 -0.6943 -0.5902 -0.7271 -0.624 -0.0765 0.5935 -0.389 -0.4983 0.7019 -0.9783 

25 0.176 0.0821 0.3083 -0.355 -0.5054 -0.1762 -0.3708 0.3001 0.7788 -0.3231 0.1119 -0.69 -0.5682 -0.4391 

26 0.1127 -0.0281 0.908 -0.5102 -0.0401 0.0557 0.5395 -0.5342 0.7279 0.8697 -0.8649 0.4844 0.768 0.6221 

27 0.8407 -0.5866 0.3499 0.8128 -0.2936 0.1983 0.2128 -0.8642 0.8566 0.823 0.3425 -0.1093 0.3451 0.2179 

28 -0.397 0.6939 -0.7789 -0.3967 -0.7567 -0.2152 -0.3072 0.773 0.6017 -0.4976 -0.8123 -0.8946 0.1278 0.4843 

29 0.6086 0.2681 -0.4994 -0.6769 0.2849 0.9362 0.5822 0.7487 -0.3378 -0.4762 0.0648 -0.6097 -0.4962 -0.5623 

30 0.3011 -0.8716 -0.5436 0.3186 -0.3554 -0.4058 0.4067 0.7907 -0.6555 -0.8893 -0.666 -0.6045 0.7063 -0.7223 

Bias out 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

-0.6744 -3.0575 2.5871 -2.1167 -1.6463 -1.176 0.7056 -0.2352 0.2352 0.7056 1.176 -1.6463 -2.1167 -2.5871 3.0575 

W2  Hidden neuron connection to output neuron 
       

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 
0.234 -0.462 -0.5587 0.4258 0.098 0.8827 -0.3403 0.409 0.8869 0.1632 0.7603 0.4992 -0.2408 0.4511 
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The connection weights and biases are shown in Table 3. It is fair to mention that the data sets 
used in the literature to model the UFL are so different that these models cannot be compared 
to one another. However, Table 2 shows that our proposed SGC-ANN model gives good 
results compared to the other models. Lazzus (2011) model, for example, predicts UFL with a 
maximum deviation of 27.8vol%which is rather high. Gharagheizi (2009) five-parameter multi-
linear equation is less accurate (AAE = 9.7% and R = 0.92) and the five intricate parameters 
(structural descriptors) pose an additional effort to determine practically. Gharagheizi (2010) 
ANN model, which predicts the UFL with R = 0.9469, AAE = 7.07% and AAD = 0.882, is 
further complicated by the use of 113 intricate groups making the method difficult to apply. 
Compared to other artificial intelligence methods our method has an advantage regarding 
combined accuracy and simplicity. It utilizes simple atom-type structure group definitions and 
requires only the compounds molecular structure, which is always known. 

Using the SGC-MNLR model has proven to be very successful in the past for predicting 
the properties of pure hydrocarbons with R as high as 0.99 (Albahri, 2003a; Albahri, 2003b; 
Albahri, 2012; Albahri, 2013b). However, when the method was applied to other classes of 
compounds with various functional groups it was less successful with R ranging from 0.79 
to 0.90 while ANN has consistently provided better alternative with a high accuracy (Pan 
et al., 2007; Patel et al., 2009; Albahri, 2013a; Albahri, 2014; Albahri, 2015). 

CONCLUSION AND PROSPECT 

We developed two models based on MNLR and ANN algorithms using a SGC approach to predict the 
UFL of pure compounds from their molecular structures. While it was not possible to predict UFL with 
the SGC-MNLR model, the back-propagation SGC-ANN model offered a significant improvement and 
an advantage in terms of accuracy (R = 0.9996 and AAE = 0.17 vol %) although it requires specific 
computation resources. The SGC-ANN model is simpler than other artificial intelligence methods in 
the literature. Our definition of atomic-type structure groups is fewer, simpler, and easier to use, while 
providing good correlations with the experimental data. Two major advantages of this work is the 
accurate identification of the structure groups that affect and contribute to the UFL of molecules, which 
enhances our understanding of the fundamentals of flammability, and the ease of accessing the SGC 
data, which might be hard to estimate or calculate using other models.  
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